

PMI® PMP®/CAPM® Workshop

Project Time Management Questions

66. The Project Time Management processes include:

- a) Activity Definition, Activity Sequencing, Activity Execution, Activity Duration Estimation, and Activity Control.
- b) Define Activities, Sequence Activities, Estimate Activity Durations, Develop Schedule, and Control Schedule.
- c) Identify Activities, Develop Schedule, Execute Activities, Control Activities, and Monitor Schedule Results.
- d) Determine Activities, Estimate Activity, Durations, Develop Schedule, Implement Activities, and Report Activity Results.

67. In rolling wave planning:

- Focus is maintained on long-term objectives, allowing near-term objectives to be rolled out as part of the ongoing wave of activities.
- b) The work to be accomplished in the near term is planned in detail, whereas the work in the future is planned at a higher level.
- c) The work far in the future is planned in detail for WBS work packages that are a low level of the WBS.
- d) A wave of detailed activities is planned during strategic planning to ensure that WBS deliverables and project milestones are achieved.

68. The Precedence Diagramming Method (PDM) is:

- a) A technique in which activities are represented by nodes and are graphically linked by one or more logical relationships to show the sequence in which the activities are to be performed.
- b) A method that uses a probabilistic approach to scheduling project activities.
- c) Is a time-phased graphical representation of the arrow diagramming method (ADM) and shows durations of project activities as well as their dependencies.
- d) More accurate than the critical path method for scheduling when there are uncertainties about the durations of project activities.

69. The duration of the activity is affected by all of the following EXCEPT:

- a) The estimated activity resource requirements.
- b) The types of resources assigned to the activity.
- c) The availability of the resources assigned to the activity.
- d) Using the precedence diagramming method (PDM) for scheduling activities instead of using the critical path method (CPM)

70. A schedule compression technique used to shorten the schedule duration for the least incremental cost by adding resources is called:

- a) Crashing.
- b) Program evaluation and review technique (PERT).
- c) Precedence diagramming method (PDM).
- d) Fast tracking.

71. The "fast-tracking" method of schedule compression involves:

- The use of industrial engineering techniques to improve productivity, thereby finishing the project earlier than originally planned.
- b) Performing in parallel for at least a portion of their duration activities or phases that are normally done in sequence, which may result in rework and increased risk.
- c) Going on a "mandatory overtime schedule" to complete the project on schedule or earlier if possible.
- d) Assigning "dedicated teams" to the critical path activities to achieve project schedule objectives.

72. An example of a mandatory dependency is:

- a) A dependency established based on knowledge of best practices within a particular application area.
- b) A dependency established based on some unusual aspect of the project where a specific sequence is desired.
- c) On a construction project, to erect the superstructure only after the foundation has been built.
- d) On a software development project, to start design only after completion and approval of all project requirements.

73. Inputs to the Define Activities process are:

- a) Schedule management plan, work breakdown structure, project schedule, and network diagram.
- b) Project schedule, resource estimates, progress reports, and change requests.
- Scope management plan, project network diagram, constraints, and assumptions.
- d) Schedule management plan, scope baseline, enterprise environmental factors, and organizational process assets.

74. Bar charts show:

- a) The level of effort for an activity.
- b) Availability of resources assigned to perform project activities.
- c) Activity start and end dates, as well as expected durations.
- d) Relative priority of activities.

75. The Precedence Diagramming Method (PDM) shows:

- a) Various levels of the work breakdown structure.
- b) Activities likely to be involved in the project integration and resource allocation processes.
- c) The logical relationships that exist between activities.
- d) The project completion date based on normal resource availability.

76. The critical path is established by calculating the following dates:

- a) Start-to-start, start-to-finish, finish-to-finish, finish-to-start.
- b) Early start, early finish, late start, late finish.
- c) Predecessor-to-successor, predecessor-to-predecessor, successor-to-successor.
- d) Primary-to-secondary, primary-to-finish, secondary-to-secondary, finish-to-finish.

77. All of the following are true about resource levelling EXCEPT:

- a) It can be used to keep resource usage at a constant level during certain time periods.
- b) It can often cause the original critical path to change.
- c) It is used to develop a resource-based WBS.
- d) It is a resource optimization technique that can be used to adjust the schedule model due to demand and supply of resources.

78. The following is true about critical chain method (CCM):

- a) It is a schedule network analysis technique that accounts for limited resources and project uncertainties.
- b) It is a network scheduling technique that allows the development of an optimum project schedule when resources are unlimited.
- c) It is another name for the resource-loaded bar chart.
- d) It is primarily used to ensure safety of critical stakeholders in major construction projects.

79. All of the following choices represent inputs to the Estimate Activity Resources process EXCEPT:

- a) Activity list.
- b) Enterprise environmental factors.
- c) The deliverable-oriented WBS of a previous, similar project.
- d) Organizational process assets.

80. Output from the Estimate Activity Resources process includes:

- a) Job descriptions of resources required for the project.
- b) Salary schedules for various project human resources.
- c) Identification of the types and quantities of resources required for each activity in a work package.
- d) Analogous estimating of resource requirements for each work package and each work period.

81. As one of the tools and techniques of Sequence Activities process, a lead:

- a) Directs a delay in the successor activity.
- b) Could be accomplished by a finish-to-start relationship with a delay time.
- c) Means the successor activity cannot start until after the predecessor is completed.
- d) Is the amount of time whereby a successor activity can be advanced with respect to a predecessor activity.

82. Program Evaluation and Review Technique (PERT) uses:

- a) The weighted average of the triangular or beta distributions duration estimates to calculate the activity early finish date when there is uncertainty with the individual activity estimates.
- b) The weighted average of optimistic, pessimistic, and most likely estimates to calculate the expected duration of the activity.
- c) Dummy activities to represent logic links among three or more activities.
- d) Free float instead of total float in the schedule calculations.

83. Analogous duration estimating is:

- a) Frequently used to estimate project duration when there is a limited amount of detailed information about the project.
- b) A bottom-up estimating technique.
- c) Based on multiple duration estimating.
- d) Generally more accurate than other duration estimating methods when expert judgement is used.

84. The critical chain:

- Focuses on managing the resources applied to the project buffer and to feeding buffer activities.
- b) Adjusts the required dependencies in the project schedule to optimize resource constraints.
- c) Adds duration buffers that are work schedule activities to manage risk and maintains focus on the total float of network paths.
- d) Adds duration buffers that are non-work schedule activities to manage uncertainty and focuses on managing remaining buffer durations against the remaining durations of chains of activities.

85. Consider the following three estimates for the duration of an activity:

```
Optimistic (tO) = 4 weeks
Most likely (tM) = 5 weeks
Pessimistic (tP) = 9 weeks
```

Using the beta distribution and the traditional Program Evaluation and Review Technique (PERT), the calculated Expected activity duration (tE) is:

- a) 4.0 weeks.
- b) 4.5 weeks.
- c) 5.5 weeks.
- d) 6.5 weeks.

86. Consider the following information about the duration of an activity:

```
Calculated expected (tE)= 5 weeks
Optimistic (tO) = 4 weeks
Pessimistic (tP) = 8 weeks
```

Using the beta distribution and the traditional Program Evaluation and Review Technique (PERT), the most likely (tM) activity duration is:

- a) 4.0 weeks.
- b) 4.5 weeks.
- c) 5.0 weeks.
- d) 6.0 weeks.

87. Consider the following three estimates for the duration of an activity:

```
Optimistic (tO) = 6 weeks
Most likely (tM) = 9 weeks
Pessimistic (tP) = 15 weeks
```

Using the triangular distribution, the calculated Expected activity duration (tE) is:

- a) 10.0 weeks.
- b) 10.5 weeks.
- c) 11.5 weeks.
- d) 12.0 weeks.

88. An activity in a project network has the following characteristics:

$$ES = 5$$

$$EF = 10$$

$$LF = 14$$

Therefore, $LS = \underline{\hspace{1cm}}$.

- a) 9.0 weeks.
- b) 10.0 weeks.
- c) 11.0 weeks.
- d) 12.0 weeks.

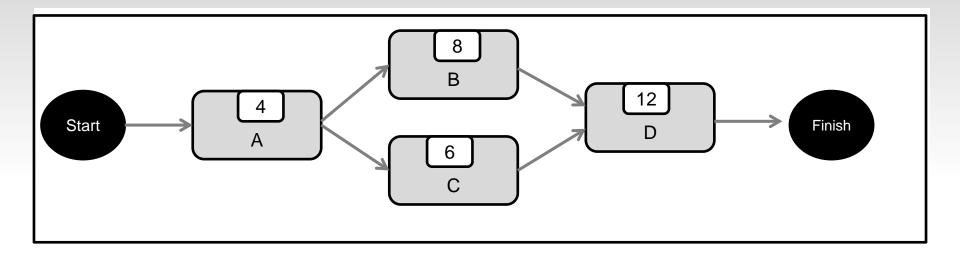
89. An activity in a network has the following characteristics:

ES = 12

EF = 22

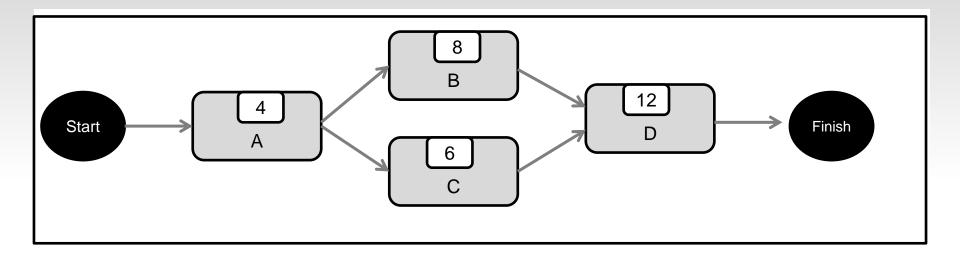
LS = 14

The duration of the activity is:


- a) 8.0 weeks.
- b) 10.0 weeks.
- c) 12.0 weeks.
- d) 14.0 weeks.

90. Crashing in time management is:

- a) A schedule compression technique used to shorten the schedule duration for the least incremental cost by adding resources.
- b) A schedule compression technique in which phases or activities that are normally done in sequence are performed in parallel.
- c) The timely input of data to calculate the critical path.
- d) Equivalent to minimizing float in the project schedule network.



91. The critical path in this network is:

- a) A-B-C.
- b) A-B-D.
- c) A-C-D.
- d) A-B-C-D

92. The free float for activity C is:

- a) +4.
- b) +2.
- c) 0.
- d) -2.

